ON THE EXPERIMENTAL DETERMINATION OF THERMAL
FLUXES IN THE WALLS OF MOLDS USED FOR THE
CONTINUOUS CASTING OF METALS

E. A. Vladimirov UDC 536.24

The equation of the temperature field in the plane wall of a mold is derived for the case in
which the surface temperature varies harmonically. A method of determining the maximum
specific thermal fluxes through the mold wall under these conditions is proposed.

One of the most important characteristics of the operation of a mold used in the continuous casting
of metals is the specific thermal flux transferred through the wall from the casting to the cooling medium.

The thermal flux may be determined experimentally by means of differential thermocouples with
their ends placed at different depths in the mold wall. If the temperature varies linearly through the wall,
the thermal flux may be simply found from

A
= — AT. 1
9= % (1)
Experiments show that the temperature difference between the junctions of the differential thermo-
couple fluctuates all the time. The characteristic curve of the thermoelectromotive force generated by
the thermocouple, recorded by means of an electronic potentiometer, for the semicontinuous casting of

copper in a copper mold, is shown in Fig. 1.

The change taking place in the surface temperature of the mold wall are of the same character. This
effect may be explained as being due to vibrations of the casting within the mold, leading to a periodic
variation of the gas space between the casting and the mold, and hence to changes in the specific thermal
flux. The heat-transfer process in the mold is therefore not a steady-state process, and the temperature
distribution through the wall is not linear. Any determination of the thermal flux by means of Eq. (1) may
therefore lead to errors.

In this paper we shall propose a method of analyzing the experimental data when determining the
thermal flux in a mold, these data being given in the form of the time dependence of the electromotive
force of a differential thermocouple (Fig. 1).

First of all, let us derive an equation for the temperature field within a plane mold wall; the wall is
washed on one side by a constant-temperature coolant, the temperature of the other surface varying har-
monically.

In order to derive this equation, we use the differential equation of heat conduction

or(x, 7 _ 4 0T (x, T) @)
o ox?

The boundary condition on the surface of the wall turned toward the casting (x = 0) is:

T, ©) =T, + T, sinot. 3)
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Fig. 1. Time variation of the electromotive force of the differential

thermocouple.

Fig. 2. Arrangement of the differential thermocouple in the mold wall.

The boundary condition on the side of the cooling medium (x = 8) is

aT (x, 7)

alT (6, ©)—T,l =—hr .
ax X==3

Let us take the initial (7 = 0) temperature distribution in the wall as linear, i.e.,

T (x, 0) =T, — kx,

where

The Biot criterion Bi = ¢6/A.

The solution of Eq. (2), with boundary conditions (3) and (4) and initial condition (5), was obtained

by means of an integral Laplace transformation:

T, ©)=Ty—kx+T, I/R (x)+S (x)sm[mr—l—cp(x)]

sm(p,na >+—p’ﬁ—cos(p,n6_x)
o7, ¢ B 0 exp | —

Wy sinp, __ cosp, [ )]
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where the Pd criterion
Pd — ot :
a

z k4 .
V =shzcosz + ——chzcosz — ——shzsing;
Bi Bi

U =chzsinz -+ —E_—shzsinz—i— ~E~chzcosz;
Bi Bi
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un are the roots of the characteristic equation
tgp = —p/Bi (14)

Some time after the onset of the oscillatory mode of variation in the temperature of the mold wall a
regular mode becomes established. Then Eq. (7) takes the form

T, )=To—hkx + T, L/Mi_%@sm[mwr ¢ (1. (15)

Using (15), we obtain the time dependence of the temperature difference at points 1 and 2 (Fig. 2),
e., the relationship indicated by the potentiometer connected to the thermoelectric pyrometer:

AT =T, ©v—T{Ky V) =Ty—ki;+ T, I/Msm [oT + @ {xy)]

—Ty+kx,—T I//Msm [0T + 9 (x,)]. (16)
+
After transformation we obtain
AT =k —x) + T, l/ Ri) — RGIE L LD =3 G sin o+, (17

where

o —arclg VIS (2) — S ()] — U [R (%) — R (%)} . a8)
VIR (x) — R (x)] + U IS (x) — S (x5)]

Using (1) and (17), we may write the equation of the specific thermal flux determined experimentally
from the temperature drop at the junctions of the differential thermocouple thus:

—_— 2 — 2
AT — 3+ xzxzaxl ]/ (Rs) = RG] : ISE)=SEI gy gr 1) 19)

Now let us find the real thermal flux transferred from the casting to the mold wall:

0T (x, 1) .
rm A B (20)
Using (15), we determine 0T (x, 7)/0x:
th(x)] +[dS(x)]2
6T(x Y _ —k+ T, V V2+U2dx sin[ot + @ (x) +¢ (91, 21)
where
R()dS(x) S()dR(x)
P (x) = arctg ; (22)
Ry RY 4 59 85
dR(x) 2 5 ., 3
dx 8 P 23)
BSW__ 2y
e e A (24)
§—x\ . 6—x 6—ux §—x 2z §—ux\ . §—x\ . 25
P(x):sh(z 5 )sm(z 3 )—ch(z 3 )cos(z 3 )+Bi ch(z 5 )sm(z 5 ), (25)
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W () = sh (25;") sin (zag") + ch(z(s;x) cos(za‘a") +%sh(zag") cos (26’6"‘)- (26)

Substituting (23) and (24) into (21) and then (21) into (20):

g=—T, 751/ POEVO_sinfar+90)+ 4O @)

Analyzing Eq. (19), we note that the average value of the specific thermal flux found from the ex-
perimental data is obtained for sin(wt + p) = 0. Then
Gepy= M. (28)
It is precisely this mean thermal flux which passes from the casting to the coolant in actual fact.
From Eq. (27) with sin{wt + ¢(0) + ¥(0)] = 0 we obtain
Jray= Mo (29)

In determining the thermal operating conditions of molds used for the continuous casting of metals,
it is very important to know the maximum thermal fluxes.

The maximum value of the specific thermal flux determined by the maximum temperature drop at
the thermocouple junctions may be found from Eq. (19) with sin (wT + p) = 1:
AT YA 3
— Ak a / [R (xl) R (xz)] + [S (xl) —S (xz)] . 30
qemax + x2 — xl l// V2 + U2 ( )

The maximum value of the real thermal flux is found from Eq. (27) with sin[wT + ¢@(0) + $(0)] =-1:

_ Az P(0) + W2 (0)
=kh+T 2O W) 31
‘kmax + a 6 V2+ U2 ( )

Dividing (31) termwise by (30), we obtain

T
I 4+m A
q‘rmax — IT()-TB (32)
qemax 1 4+ m, Ta
TO—'TB
where
RN IO O
== 1 —_ 3
m, z( 4 Bi)‘/. oty (33)
8 1) [R(x) — R (1)) —[S (x) — S ()
- ] 4 — 1 2 1 2 . 34
e xz——xl( + Bi)l/ VEE U 4

Using Eq. (15), we express the mean and peak temperatures on the surface of the mold wall turned
toward the casting Ty and Ty in terms of T and Ty, the mean and peak temperatures on the surface of the
wall turned toward the coolant. Then:

Ta _ T3 Ve 2 . (35)

To—T, - T(;—"TB 5 1 ,.1_
V2z( + B

Substituting (35) into (32), we obtain

G =ge L0 , (36)
max max ] + /229
where
1 —
b, =—=V P%(0)+ W2(0);
=773 V P*(0) oy (37)
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Fig. 3. Relation between the Bi and Pd criteria and the coeffi-
cients k, (a) and k, (b).
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= Ta
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Using Egs. (19) and (27), we may also determine the minimum value of the specific thermal flux
calculated from the experimental data for sin (wr + p) =—1, and the real values for sinfwr + @(0) + ¥(0)}
=1:

rmin 1 —k0
L~ s (40)
e min 2
Using (28) and (29) we may derive an equation for 6:
1 1
il = - + . (41)
2 (qrmax+ qrmin) (qemax qemhz
Substituting (36) and (40) into (41) we obtain
g e—1 , (42)
ky(e -+ 1)
where
Te nax . (43)
€min

Thus Eq. (36) may be used in order to determine the maximum values of the true thermal fluxes in
the mold.

In order to ease the practical use of Eq. (36), Fig. 3a, b gives the coefficients k; and k, in the form of
curves plotted for various Bi and Pd criteria.

In plotting the curve of k, from (38), it was assumed that x, = 6 and x; = 0.26, i.e., that the cold junc-
tion of the thermocouple lay on the surface of the wall washed by the coolant and the hot junction at a dis-
tance of 0.26 from the surface of the wall turned toward the casting. For a mold wall thickness of 12 mm the
thermocouple junctions were arranged in approximately the same way.
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The method proposed for determining the thermal fluxes in the plane walls of the mold is as follows.

A differential thermocouple is placed in the wall of the mold and connected to an automatically-re-
cording potentiometer. Using the recording of the electromotive force developed by the thermocouple,
we determine demaxs qeav’ and € = qemax/ qemin by means of Eq. (1).

Apart from the differential thermocouple, another thermocouple is placed on the surface of the wall
on the side of the coolant and connected to another automatic recorder. The readings of this latter give T,
and Tj.

Knowing the temperature of the coolant T, Eqg. (39) may be used to determine 9. Then we find k,
from (42), and then the Bi criterion from Fig. 3b. The angular frequency for finding the Pd criterion is
determined from the diagrams recorded by the potentiometer.

Finally, using Fig. 3a, we may determine k;, and then by Eq. (36) Irax As already indicated,

degy = Grgy

NOTATION
AT is the temperature difference between the differential thermocouple junctions;
AX is the distance between the differential thermocouple junctions;
A is the thermal conductivity of the mold wall material;
Tos. T(', are the mean temperatures of the wall surfaces facing the casting and coolant, respectively;
Ta, T4 are the peak values of the corresponding temperatures;
w is the angular frequency of temperature variation;
) is the mold wall thickness;
T is the temperature of coolant;
o is the heat-transfer coefficient between wall and coolant;
T is the time;
Bi is the Biot number;
Pd is the Predvoditelev number.
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